groups, or X_4 ' and X_5 ' are taken together and are alkanediyl $_{(C \le 12)}$, alkoxydiyl $_{(C \le 12)}$, alkylaminodiyl $_{(C \le 12)}$, or a substituted version of any of these groups;

y is an integer from 1 to 150; R_5 is a group of the formula:

$$Y_1$$
 Y_2
 Y_3
 Y_2
 Y_4
 NH
 NH
 NH
 NH
 NH

wherein:

n_z is 1-10;

 $\tilde{Y_1}, Y_2$, and Y_3 are each independently selected from hydrogen, alkyl $_{(C \le 12)}$, cycloalkyl $_{(C \le 12)}$, substituted alkyl $_{(C \le 12)}$; or substituted cycloalkyl $_{(C \le 12)}$; and

Y₄ is a dye with the following structure:

z is an integer from 0-6; and

 R_6 is hydrogen, halo, hydroxy, alkyl $_{(C \le 12)}$, or substituted alkyl $_{(C \le 12)}$, wherein R_3 , R_4 , and R_5 can occur in any order within the polymer, provided that R_3 and R_4 are not the same group.

2.-3. (canceled)

4. The polymer according to claim 1, wherein \mathbf{R}_1 is hydrogen.

5. The polymer according to claim 1, wherein R_1 is alkyl $_{(C \le 6)}$.

6. The polymer of claim **5**, wherein R_1 is methyl.

7. The polymer according to claim 1, wherein R_1 is

- **8**. The polymer according to claim 1, wherein R_1 is a metal chelating group.
- **9**. The polymer according to claim **1**, wherein R_1 is a metal chelating group selected from DOTA, TETA, Diamsar, NOTA, NETA, TACN-TM, DTPA, TRAP, NOPO, AAZTA, DATA, HBED, SHBED, BPCA, CP256, DFO, PCTA, HEHA, PEPA, or a derivative thereof.
- 10. The polymer of claim 8, wherein the metal chelating group is a nitrogen containing macrocycle.
- 11. The polymer of claim 8, wherein the nitrogen containing macrocycle is a compound of the formula:

$$\begin{array}{c} R_{7}{}'\\ \downarrow\\ \downarrow\\ R_{9}{}'\\ \end{array}$$

wherein:

 $R_7, R_8, R_9, R_{10}, R_7', R_8', and R_9'$ are each independently selected from hydrogen, alkyl $_{(C \le 12)}$, acyl $_{(C \le 12)}$, -alkanediyl $_{(C \le 12)}$ -acyl $_{(C \le 12)}$, or a substituted version of any of these groups; or a linker, wherein the linker is an alkanediyl $_{(C \le 12)}$ -C(O)NH— or a substituted alkanediyl $_{(C \le 12)}$ -C(O)NH—; or

 R_7 is taken together with one of R_8 , R_9 , or R_{10} and is alkanediy $l_{(C \le 12)}$; or

 R_8 is taken together with one of R_7 , R_9 , or R_{10} and is alkanediyl_(C≤12); or

 R_9 is taken together with one of $R_7,\,R_8,$ or R_{10} and is alkanediyl $_{(C \le 12)};$ or

 R_{10} is taken together with one of R_7 , R_8 , or R_9 and is alkanediyl_(C≤12); or

 R_7' is taken together with one of R_8' or R_9' and is alkanediyl_{(C \(\sigma 12)\)}; or

 R_8 ' is taken together with one of R_7 ' or R_9 ' and is alkanediyl $_{(C \le 1.2)}$; or

 R_9 ' is taken together with one of R_7 ' or R_8 ' and is alkanediyl $_{(C \le 12)}$; and

a, b, c, d, a', b', and c' are each independently selected from 1, 2, 3, or 4.

12. The polymer of claim 11, wherein a, b, c, d, a', b', and c' are each independently selected from 2 or 3.